Two-divisibility of the Coefficients of Certain Weakly Holomorphic Modular Forms

نویسنده

  • DARRIN DOUD
چکیده

We study a canonical basis for spaces of weakly holomorphic modular forms of weights 12, 16, 18, 20, 22, and 26 on the full modular group. We prove a relation between the Fourier coefficients of modular forms in this canonical basis and a generalized Ramanujan τ -function, and use this to prove that these Fourier coefficients are often highly divisible by 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Holomorphic Modular Forms and Rank Two Hyperbolic Kac-moody Algebras

In this paper, we compute basis elements of certain spaces of weight 0 weakly holomorphic modular forms and consider the integrality of Fourier coefficients of the modular forms. We use the results to construct automorphic correction of the rank 2 hyperbolic Kac-Moody algebras H(a), a = 4, 5, 6, through Hilbert modular forms explicitly given by Borcherds lifts of the weakly holomorphic modular ...

متن کامل

On the Zeros and Coefficients of Certain Weakly Holomorphic Modular Forms

For this paper we assume familiarity with the basics of the theory of modular forms as may be found, for instance, in Serre’s classic introduction [12]. A weakly holomorphic modular form of weight k ∈ 2Z for Γ = PSL2(Z) is a holomorphic function f on the upper half-plane that satisfies f( cτ+d ) = (cτ + d)f(τ) for all ( a b c d ) ∈ Γ and that has a q-expansion of the form f(τ) = ∑ n≥n0 a(n)q , ...

متن کامل

p-ADIC PROPERTIES OF COEFFICIENTS OF WEAKLY HOLOMORPHIC MODULAR FORMS

We examine the Fourier coefficients of modular forms in a canonical basis for the spaces of weakly holomorphic modular forms of weights 4, 6, 8, 10, and 14, and show that these coefficients are often highly divisible by the primes 2, 3, and 5.

متن کامل

Cycle Integrals of the J-function and Mock Modular Forms

In this paper we construct certain mock modular forms of weight 1/2 whose Fourier coefficients are cycle integrals of the modular j-function and whose shadows are weakly holomorphic forms of weight 3/2. As an application we construct through a Shimura-type lift a holomorphic function that transforms with a rational period function having poles at certain real quadratic integers. This function y...

متن کامل

Hecke Operators for Weakly Holomorphic Modular Forms and Supersingular Congruences

We consider the action of Hecke operators on weakly holomorphic modular forms and a Hecke-equivariant duality between the spaces of holomorphic and weakly holomorphic cusp forms. As an application, we obtain congruences modulo supersingular primes, which connect Hecke eigenvalues and certain singular moduli.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011